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Depth from Defocus (DfD) and All-in-Focus (Aif) tasks across three
different datasets. In Sec. 4 we extend the exploration of focal dis-
tance, aperture, and exposure time. First, we introduce more details
about the Time-Aperture-Focus (TAF) stack creation. Then we de-
scribe the sampling strategies employed for these parameters and
present objective results for each individual scene. Furthermore,
we include comparisons of the All-in-Focus High Dynamic Range
(HDR) and depth quality for different sampled cross sections (𝐹𝑆 ,
𝐹𝑀 , 𝐹𝐿 , and 𝐹𝑉 ). Next we compare results synthesized with and
withotu use of implicit tone mapper (Sec. 5) and visualize differn-
tiable disk kernel for different regions of the image (Sec. 6). In Sec.
7 we demonstrate post-capture editing capabilities of our pipeline.
Finally, in Sec. 8, we present flexibility of our pipeline by showing
the AiF images and depth maps synthesised by network that has
been trained on only 2 input samples from the TAF stack.

1 NETWORK ARCHITECTURE AND IMPLEMENTATION
Our pipeline consists of four components implemented by MLPs,
including the flow predictor 𝐹𝑓 , depth predictor 𝐹𝑑 , AiF predic-
tor 𝐹𝑎 , and implicit tone mapper 𝐹𝑡 . The flow predictor utilizes a
two-layer SIREN [Sitzmann et al. 2020] with three input and two
output channels, while both the depth predictor and all-in-focus
predictor utilize a four-layer SIREN with the only difference being
in the output, where the depth predictor has one channel and the
all-in-focus predictor has three channels. Since the HDR image and
depth map should be non-negative, we use the exponential func-
tion to constrain the output from 𝐹𝑑 and 𝐹𝑎 . The tone mapper is
implemented using a two-layer MLP with linear, leaky ReLU, linear,
and a hyperbolic tangent activation function. We train the network
with learning rate 1𝑒−4 and Adam optimiser [Kingma and Ba 2014]
based on the Pytorch framework. Training the model from scratch
with a set of five focal stack images, each having a resolution of
256x384, requires approximately 22 minutes. This training process
involves 2000 iterations and is performed on a GPU RTX 8000.

2 DATASETS
Rendered dataset. Since most of the published datasets do not

consider the lens breathing effect, for a more reliable evaluation,
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we use 1Blender to render Time-Aperture-Focus (TAF) stacks with
lens breathing for 10 production quality scenes from Blender Studio
platform (https://studio.blender.org/). Selected scenes come from
three unique animations: Sprite Fright - 3 scenes, Spring - 3 scenes,
and Charge - 4 scenes. Five of the selected scenes include scenarios
with high dynamic range lighting, while the other five demostrate
more uniform lighting conditions. As Blender’s rendering Engine
Cycles does not include parameter specyfing working distance (dis-
tance between sensor and lens in real-life cameras) we simulated
lens breathing by modifying focal length (and thus field of view)
using the following equation:

𝑓𝑐𝑢𝑟𝑟 = 𝑓𝑟𝑒 𝑓 + 𝛼 ∗ (𝑆𝑚𝑎𝑥 − 𝑆𝑐𝑢𝑟𝑟 ), (1)
where 𝑓𝑐𝑢𝑟𝑟 specifies focal length at actively selected focal distance
𝑆𝑐𝑢𝑟𝑟 , 𝑓𝑟𝑒 𝑓 denotes the reference focal length selected for scene, and
𝑆𝑚𝑎𝑥 is the maximum focal distance selected for the scene. Both
focal length and focal distance are specified in milimeters. 𝛼 is a
free parameter that allows to tune the strength of lens breathing
effect. For all the scenes used in our evalution we set 𝛼 to 0.0001.

Real dataset. For this dataset we captured TAF stacks for 25 unique
scenes. Among them 13 scenes have multiple exposure information,
which can be used for All-in-Focus HDR image reconstruction and
depth map estimation. All of the captured scenes support the depth
from defocus (DfD) task. For capturing we used a Canon RP camera
with EF 50mm/F1.8 , RF 24-105mm/F4.0 and RF 85mm/F2.0 lenses
and Canon 6D2 camera with EF 24-105mm F/3.5-5.6 lens. As our
method primarily targets static scenes, we ensured stability of cam-
era by using a tripod. For capturing images, we switch the camera
to manual mode and manually adjust settings such as ISO, aperture,
and exposure time. To facilitate the capturing process, we employ a
remote application and utilize third-party libraries such as 2gphoto
for controlling the camera.

3 DEPTH FROM DEFOCUS AND ALL IN FOCUS IMAGE
RECONSTRUCTION - VISUAL COMPARISON

We present additional results for depth-from-defocus (DfD) and
all-in-focus (AiF) image reconstruction using various datasets, in-
cluding rendered, RGBD, and real datasets. Our method consistently
produces more accurate depth maps across these datasets (Fig. 1, 2,
3) and achieves sharp, clean AiF images compared to other methods
(Fig. 4, 5, 6). These results further emphasize the effectiveness and
benefits of our approach.

4 EXPLORATION OF THE FOCAL DISTANCE, APERTURE
AND EXPOSURE TIME

In this section, we provide additional details about the exploration
section. First we provide more detail about the dataset creation,
which is important to the comprehensive exploration experiments.
In details, we first render five high dynamic range scenes under
different lighting conditions. Each scene contains five different f-
numbers and focal distances, accounting for the lens breathing effect.
Then we use the following way to project the HDR to multiple ex-
posure LDR images. Initially, we refer to [Andersson et al. 2021]
1https://www.blender.org/
2http://www.gphoto.org/

to determine the approximate exposure boundaries (top and bot-
tom) that encompass the entire dynamic range. Subsequently, we
discretize the dynamic range based on the lens f-number, ensuring
compliance with the relationship defined in Eq. 2.

𝑇 = 2 · 𝑙𝑜𝑔2 (𝑁 ) + 𝐸𝑉 (2)

The tone mapper we used is as follow:

𝐼 (𝑥,𝑦) =
{

12.92 · 𝐼 (𝑥,𝑦), 𝐼 (𝑥,𝑦) < 𝑇

𝑐𝑙𝑖𝑝 ((1 + 𝜙) ((𝐼 (𝑥,𝑦) · 2𝐸𝑉 )𝑔) − 𝜙), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)
where the 𝐼 indicates the HDR image and 𝐼 is the tone mapped LDR
image. 𝑡 represents the threshold value, which is specifically set
to 𝑡 = 0.0031308. 𝜙 , serves as an offset with 𝜙 assigned a value of
𝜙 = 0.055. 𝐸𝑉 indicates the exposure, and the parameter 𝑔 is utilized
for gamma correction, with 𝑔 chosen as 𝑔 = 1

2.4 .
As a result, we obtain a 3D parallelogram consisting of 125 scat-

tered points, as Fig. 7. Each point represents a unique combination
of TAF (time, aperture and focal distance);

To enhance understanding, we present visualizations of the four
cross sections that used during the 2D sampling process. Fig. 7 shows
the sections, which involves fixing the aperture and changing the
exposure time while performing focal sweeping. Fig. 8 shows the
section, which involves fixing the exposure time and changing the
aperture size while performing focal sweeping. Furthermore, Fig. 9
showcases the four distinct patterns that were specifically designed
for sampling purposes.

In the main paper, we present the average results of HDR-VDP3
[Mantiuk et al. 2023] and PU21-SSIM [Azimi et al. 2021] for five
scenes. Here, we provide detailed results for each individual scene
in Table. 2, 3, 4, 5, 6, and their previews in Fig. 13. We calculate the
HDR-VDP3 using linear HDR images under the condition that the
display resolution is 1024 · 720 with viewing distance 0.5m. Further-
more, we provide the visualizations of reconstructed HDR, depth
map and HDR-VDP3 error map in Fig. 14 and 15. Additionally, we
corroborate the findings presented in the main paper on real dataset.
Specifically, we confirm that employing a moderate aperture size
with variable exposure time and focal sweeping, or a fixed exposure
time with changing aperture and focal sweeping, yields desirable
results for both comprehensive high dynamic range (HDR) recon-
struction and depth estimation. We capture three real scenes with
different TAF combinations as the rendered dataset. Unlike rendered
datasets, real datasets do not provide ground truth information. To
assess performance in this scenario, we utilize novel view synthesis.
This approach involves training the model on a sampled TAF stack,
similar to the rendered dataset, which comprises five images. Once
trained, we leverage the learned flow, depth, and AiF HDR to gener-
ate additional views of the dataset. By comparing these synthesized
views with the real images, we can compute metrics to evaluate
the model’s performance. Essentially, the accuracy of the learned
depth and AiF HDR is directly proportional to the proximity of the
synthesized images to the real images. To maintain practical conve-
nience while allowing for a thorough exploration of our concerns,
n-rook sampling is not included in this case. We use PSNR and SSIM
[Wang et al. 2004] to evaluate the quality of the synthesised images.
The notations keep consistent with mainpaper 𝐹𝑆 (representing
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large aperture size), 𝐹𝑀 (representing moderate aperture size), and
𝐹𝐿 (representing small aperture size) to denote the three scenarios
in which the F-number is fixed while the exposure time and focal
distance are varied. 𝐹𝑉 represents the case that the exposure time
is fixed while the F-number and focal distance is changing. Based

Table 1. Explorations on real data.

Methods PSNR (↑) SSIM (↑)
F_S 31.15 ± 3.21 0.954 ± 0.028
F_M 31.98 ± 3.81 0.956 ± 0.030
F_L 30.98 ± 3.65 0.942 ± 0.034
F_V 31.68 ± 3.50 0.955 ± 0.029

on the results presented in Table 1, first, it is evident that after con-
ducting a significant number of tests with various combinations,
the overall quality of the results appears promising. This indicates
the robustness of our method. Additionally, both 𝐹𝑀 and 𝐹𝑉 metrics
outperform the others, aligning with the conclusions drawn from
the rendered dataset.

As mentioned in the main paper, our method is applicable to 1D
scenarios as well. We have presented numerous results for the depth
from defocus (DfD) task. In addition, Fig. 12 showcases the results
for HDR fusion [Debevec and Malik 1997] and Varying Aperture
Photography (VAP) [Hasinoff and Kutulakos 2007]. We can see that
our method performswell for the specific task. However, it should be
noticed that due to the limitations of the inputs, it can be challenging
to reconstruct all the information from them.

Table 2. Explorations of different combinations for scene 1.

Methods HDR-VDP3 (↑) PU21-SSIM (↑) Abs_rel (↓)
F_S 9.257 ± 0.153 0.914 ± 0.010 0.770 ± 0.350
F_M 9.780 ± 0.047 0.953 ± 0.007 0.430 ± 0.244
F_L 9.837 ± 0.001 0.951 ± 0.001 0.462 ± 0.001
F_V 9.770 ± 0.019 0.951 ± 0.047 0.268 ± 0.041

n-rooks 9.741 ± 0.004 0.943 ± 0.018 0.262 ± 0.017

Table 3. Explorations of different combinations for scene 2.

Methods HDR-VDP3 (↑) PU21-SSIM (↑) Abs_rel (↓)
F_S 9.721 ± 0.031 0.959 ± 0.003 0.496 ± 0.127
F_M 9.852 ± 0.008 0.967 ± 0.001 0.467 ± 0.074
F_L 9.810 ± 0.008 0.958 ± 0.002 0.768 ± 0.002
F_V 9.834 ± 0.010 0.965 ± 0.001 0.432 ± 0.084

n-rooks 9.829 ± 0.021 0.963 ± 0.003 0.464 ± 0.029

5 IMPORTANCE OF IMPLICIT TONE MAPPER
In Fig. 10, we show an additional visualization that highlights the
superiority of our implicit tonemapper over the explicit one in terms
of the quality of reconstructed HDR (High Dynamic Range) images.
We can see the explicit tone mapper introduces more artifacts to
the recovered HDR, resulting in poor overall quality.

Table 4. Explorations of different combinations for scene 3.

Methods HDR-VDP3 (↑) PU21-SSIM (↑) Abs_rel (↓)
F_S 9.791 ± 0.035 0.962 ± 0.006 0.146 ± 0.019
F_M 9.869 ± 0.013 0.971 ± 0.003 0.208 ± 0.027
F_L 9.835 ± 0.021 0.964 ± 0.003 0.455 ± 0.043
F_V 9.847 ± 0.016 0.968 ± 0.004 0.164 ± 0.022

n-rooks 9.846 ± 0.010 0.966 ± 0.003 0.168 ± 0.015

Table 5. Explorations of different combinations for scene 4.

Methods HDR-VDP3 (↑) PU21-SSIM (↑) Abs_rel (↓)
F_S 9.514 ± 0.044 0.944 ± 0.003 0.136 ± 0.046
F_M 9.828 ± 0.014 0.970 ± 0.003 0.083 ± 0.006
F_L 9.917 ± 0.015 0.982 ± 0.003 0.402 ± 0.029
F_V 9.810 ± 0.024 0.970 ± 0.004 0.153 ±0.005

n-rooks 9.831 ± 0.099 0.967 ± 0.012 0.146 ± 0.051

Table 6. Explorations of different combinations for scene 5.

Methods HDR-VDP3 (↑) PU21-SSIM (↑) Abs_rel (↓)
F_S 9.238 ± 0.148 0.907 ± 0.019 0.473 ± 0.017
F_M 9.817 ± 0.046 0.962 ± 0.007 0.482 ± 0.051
F_L 9.910 ± 0.009 0.971 ± 0.002 0.686 ± 0.003
F_V 9.774 ± 0.003 0.957 ± 0.001 0.454 ± 0.010

n-rooks 9.830 ± 0.012 0.962 ± 0.002 0.478 ± 0.018

6 DISK KERNEL - VISUALIZATION
In Fig. 11, we provide visualizations of the defocus map and the var-
ious sizes of our disk kernel, corresponding to the specific location
in the image.

7 EDITING CAPABILITES
We demonstrate the editing capabilities our method enables. With
only 5 inputs of the TAF stack, the proposed pipeline is able to
synthesise an image with any exposure, aperture and focal distance
selected from continuous 3D space (Fig. 16 and 17).

8 SPARSE SAMPLING OF THE TAF STACK
In the paper all our evaluations were conducted on the models
trained with the use of 5 input samples from the TAF stack. However,
even for lower number of samples, our method produces plausible
all-in-focus HDR image nad Depth map. In Fig. 18, we show results
synthesized by our method trained with only two input samples
from the TAF stack.

8.1 The Effect of Lens Breathing
While our method can handle the lens breathing in the input data,
a subset of SOTA methods (DFFV and DEReD) do not account for
this effect, which might lead to a drop in their performance. In this
section, we investigate how our method compares to the existing
ones when the lens breathing is removed from the data. The results
of the ablation run on the modified NYUv2 dataset are presented
in Table 7. As expected, removing the lens breathing improves the
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Table 7. Evaluation of DfD on the NYU dataset without lens breathing.

Method MAE (↓) MSE (↓) Abs_rel (↓)

DFFMobile 0.20 ± 0.09 0.07 ± 0.06 0.95 ± 0.01
DFFWild 0.11 ± 0.03 0.02 ± 0.01 0.16 ± 0.12
DEReD 0.19 ± 0.11 0.07 ± 0.07 0.82 ± 0.06
DFFV 0.32 ± 0.15 0.16 ± 0.13 0.65 ± 0.66
Ours 0.11± 0.04 0.02 ± 0.01 0.07 ± 0.03

Table 8. Evaluation of AiF image reconstruction on the NYU dataset without
lens breathing.

Method PSNR (↑) SSIM (↑)

DFFMobile 33.2 ± 5.2 0.96 ± 0.04
DEReD 25.9 ± 2.4 0.90± 0.05
Ours 37.4 ± 5.6 0.98 ± 0.02

performance of all SOTA methods (refer to Table 2 in the main
manuscript), yet they do not surpass the proposed solution in the
DfD task.

In addition, we conduct experiments on All-in-Focus reconstruc-
tion to illustrate the substantial influence of the lens breathing
effect on other methods. As indicated in Table 8, the absence of
lens breathing notably improves the quality of the SOTA methods.
Nevertheless, our method still demonstrates superior performance.

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.



Neural Implicit Representation for the Image Stack: Depth, All-in-Focus, and High Dynamic Range. • 5

GT DFFMobileOurs DFFWild DEReD DFFV

Fig. 1. More depth visualization for render datasets used in evaluation.

GT DFFMobileOurs DFFWild DEReD DFFV

Fig. 2. More depth visualization for RGBD datasets used in evaluation.
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Defocus Image DFFMobileOurs DFFWild DEReD DFFV

Fig. 3. More depth visualization for real datasets used in evaluation. As for Real Dataset there is no Ground Truth available, we provide one of the images from
the focal stack for more intuitive comparison.

GT Ours DFFMobile DEReD

Fig. 4. More all-in-focus image reconstruction for render datasets used in evaluation.
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GT Ours DFFMobile DEReD

Fig. 5. More all-in-focus image reconstruction for RGBD datasets used in evaluation.

Defocus Image Ours DFFMobile DEReD

Fig. 6. More all-in-focus image reconstruction for real datasets used in evaluation. As for Real Dataset there is no Ground Truth available, we provide one of
the images from the focal stack for more intuitive comparison.
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Fig. 7. Sampled cross sections of fixed aperture with changing exposure
time and focal sweeping. In these cases, the exposure conditions vary in
conjunction with changes in the exposure time. The left side cross section
represents images captured using a small F-number (large aperture size),
while systematically varying the exposure time and focal distance in differ-
ent combinations.
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Fig. 8. Sampled cross sections of fixed exposure time with changing aper-
ture size and focal sweeping. In this case, the exposure conditions vary in
conjunction with changes in the aperture size. A small F-number (large
aperture) corresponds to higher exposure, while a large F-number (small
aperture) corresponds to lower exposure.

Diagonal 1 Diagonal 2

Horizontal
     Cross

Vertical
  Cross

Fig. 9. Sampling patterns we use for the 2D cross section sampling.

Explicit Tone Mapper

 Implicit Tone Mapper (Ours)

Fig. 10. Comparisons of the reconstructed HDR between the explicit tone
mapper and ours.Figure showcases the presence of artifacts in the recon-
structed HDR images from the explicit tone mapper.

Learned Defocus Map d = 13.3

d = 1

d = 6.4

Ours Discrete 

Fig. 11. Visualization of the learned defocus map and our disk kernels. We
choose three representative points in defocus map to display the correspond-
ing kernel, d denotes the value at the defocus point, which also serves as
the diameter of the Circle of Confusion (CoC). For comparisons, we provide
the discrete disk kernel in the rights side as well.
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Multiple Exposure Inputs

Varying Aperture Inputs Learned HDR Learned Depth

Fig. 12. HDR and VAP results visualizations. In the first row, the HDR fusion task [Debevec and Malik 1997] is demonstrated, which successfully reconstructs
the HDR but fails to estimate the depth map due to the absence of defocus blur clues. In the second row, the VAP (Varying Aperture Photography) [Hasinoff
and Kutulakos 2007] results is showcased. By changing the aperture size, VAP incorporates multiple exposure information and defocus blur cues, enabling the
reconstruction of both HDR and depth. However, the supervision based solely on aperture is insufficient to produce accurate results.

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

Fig. 13. Visualization of five scenes we use in the exploration.
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All-in-Focus 
HDR image

Depth Map

HDR-VDP 
Error Map 

F_S F_M F_L F_V

865 px�

GT

Fig. 14. Visualizations of the explorations of the focal distance, aperture, and exposure. The results demonstrate that a small F-number (𝐹𝑆 ), which corresponds
to a large aperture size, leads to a decrease in the quality of all-in-focus HDR reconstruction. Conversely, a large F-number (𝐹𝐿), indicating a small aperture
size, results in poorer depth map estimation. However, utilizing a middle aperture (𝐹𝑀 ) proves advantageous for both aspects. Furthermore, fixing the exposure
time while varying the aperture size (𝐹𝑉 ) produces promising outcomes in terms of both all-in-focus HDR reconstruction and depth map estimation, similar to
the performance achieved with the 𝐹𝑀 configuration.

.

All-in-Focus 
HDR image

Depth Map

HDR-VDP 
Error Map 

F_S F_M F_L F_V

865 px�

GT

Fig. 15. Visualizations of the explorations of the focal distance, aperture, and exposure. The results demonstrate that a small F-number (𝐹𝑆 ), which corresponds
to a large aperture size, leads to a decrease in the quality of all-in-focus HDR reconstruction. Conversely, a large F-number (𝐹𝐿), indicating a small aperture
size, results in poorer depth map estimation. However, utilizing a middle aperture (𝐹𝑀 ) proves advantageous for both aspects. Furthermore, fixing the exposure
time while varying the aperture size (𝐹𝑉 ) produces promising outcomes in terms of both all-in-focus HDR reconstruction and depth map estimation, similar to
the performance achieved with the 𝐹𝑀 configuration.

.
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Editing Focus Distance with �xed F-number and Exposure Time

Editing F-number with �xed Focus Distance and Exposure Time

Editing Exposure Time  with �xed Focus Distance and F-numberInput TAF Stack

Fig. 16. Visualizations of post editing. After training our model on the left side TAF stack, we gain the capacity to perform various post editing. As shown
in the right side, in the upper row, adjusting the focal distance with constant F-number and exposure time yields promising refocus results. In the second
row, changing the F-number while fixing focal distance and exposure time influences blur and exposure levels. Lastly, varying exposure time with fixed focal
distance and F-number impacts only exposure. From the last two rows, it is clear that exposure can be influenced by both the F-number and exposure time.
However, altering the F-number uniquely impacts the defocus blur too.

Editing Focus Distance with �xed F-number and Exposure Time

Editing F-number with �xed Focus Distance and Exposure Time

Editing Exposure Time  with �xed Focus Distance and F-numberInput TAF Stack

Fig. 17. Visualizations of post editing. After training our model on the left TAF stack, we gain the capacity to perform various post editing. As shown in the
right side, in the upper row, adjusting the focal distance with constant F-number and exposure time yields promising refocus results. In the second row,
changing the F-number while fixing focal distance and exposure time influences blur and exposure levels. Lastly, varying exposure time with fixed focal
distance and F-number impacts only exposure. From the last two rows, it’s clear that exposure can be influenced by both the F-number and exposure time.
However, altering the F-number uniquely impacts the defocus blur too.
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Input TAF Image 1 Input TAF Image 2 Estimated Depth Map Reconstructed AiF HDR

Fig. 18. Results on two inputs. Our methods offer flexibility in terms of inputs, as it can be applied to arbitrary inputs. This means that even if two different
TAF stack images are provided, our approach can still generate a reasonable All-in-Focus HDR image and depth map. For better visualization, we use [Reinhard
et al. 2002]to tone map the learned HDR to LDR. This versatility allows for a wider range of applications and accommodates various input scenarios.

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.



Neural Implicit Representation for the Image Stack: Depth, All-in-Focus, and High Dynamic Range. • 13

REFERENCES
Pontus Andersson, Jim Nilsson, Peter Shirley, and Tomas Akenine-Möller. 2021. Visu-

alizing the Error in Rendered High Dynamic Range Images. In Eurographics Short
Papers. https://doi.org/10.2312/egs.20211015

Maryam Azimi et al. 2021. PU21: A novel perceptually uniform encoding for adapting
existing quality metrics for HDR. In 2021 Picture Coding Symposium (PCS). IEEE,
1–5.

Paul E. Debevec and Jitendra Malik. 1997. Recovering High Dynamic Range Radiance
Maps from Photographs. In Proceedings of the 24th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’97). ACM Press/Addison-Wesley
Publishing Co., USA, 369–378. https://doi.org/10.1145/258734.258884

Samuel W Hasinoff and Kiriakos N Kutulakos. 2007. A layer-based restoration frame-
work for variable-aperture photography. In 2007 IEEE 11th International Conference
on Computer Vision. IEEE, 1–8.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Rafal KMantiuk, Dounia Hammou, and ParamHanji. 2023. HDR-VDP-3: A multi-metric
for predicting image differences, quality and contrast distortions in high dynamic
range and regular content. arXiv preprint arXiv:2304.13625 (2023).

Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda. 2002. Photographic
tone reproduction for digital images. In Proceedings of the 29th annual conference on
Computer graphics and interactive techniques. 267–276.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon
Wetzstein. 2020. Implicit neural representations with periodic activation functions.
Advances in Neural Information Processing Systems 33 (2020), 7462–7473.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image quality
assessment: from error visibility to structural similarity. IEEE transactions on image
processing 13, 4 (2004), 600–612.

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.

https://doi.org/10.2312/egs.20211015
https://doi.org/10.1145/258734.258884

	Abstract
	1 Network architecture and implementation
	2 Datasets
	3 Depth from Defocus and All in Focus image reconstruction - visual comparison
	4 Exploration of the focal distance, aperture and exposure time
	5 Importance of implicit tone mapper
	6 Disk kernel - visualization
	7 Editing Capabilites
	8 Sparse sampling of the TAF stack
	8.1 The Effect of Lens Breathing

	References

